湖北自考网旗下频道:湖北高考网为考生提供湖北高考信息服务 ,仅供学习交流使用,官方信息以湖北教育考试院为准。

湖北自考网

湖北高考
高考首页 高校信息 高考动态 高考分数线 特殊招生 高考作文 高考报考
高考专题:
湖北高考报名须知 考试时间 考试政策 考试大纲 考场查询 成绩查询 录取结果查询 分数线预测 招生简章 高考院校 报考答疑 高考百科
湖北高考网 > 高考辅导资料 > 湖北高考数学辅导 > 2015年湖北高考数学章节专题二十四网站地图

2015年湖北高考数学章节专题二十四

来源:湖北自考网 时间:2015-03-15


湖北2015年高考数学章节专题二十四


  2015年湖北高考生正在努力备考中,湖北高考网整理了2015年湖北高考数学章节专题,希望对大家的复习有帮助。

  一、选择题

  1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是(  )

  A.椭圆 B.直线 C.圆 D.线段

  2.椭圆+=1的左右焦点为F1,F2,一直线过F1交椭圆于A、B两点,则△ABF2的周长为(  )

  A.32 B.16 C.8 D.4

  3.椭圆2x2+3y2=1的焦点坐标是(  )

  A. B.(0,±1)

  C.(±1,0) D.

  4.方程+=1表示焦点在x轴上的椭圆,则实数a的取值范围是(  )

  A.(-3,-1) B.(-3,-2)

  C.(1,+∞) D.(-3,1)

  5.若椭圆的两焦点为(-2,0),(2,0),且该椭圆过点,则该椭圆的方程是(  )

  A.+=1 B.+=1

  C.+=1 D.+=1

  6.设F1、F2是椭圆+=1的两个焦点,P是椭圆上一点,且P到两个焦点的距离之差为2,则△PF1F2是(  )

  A.钝角三角形 B.锐角三角形

  C.斜三角形 D.直角三角形

  题 号 1 2 3 4 5 6 答 案 二、填空题

  7.(2009·北京)椭圆+=1的焦点为F1、F2,点P在椭圆上.若|PF1|=4,则|PF2|=________,∠F1PF2的大小为________.

  8.P是椭圆+=1上的点,F1和F2是该椭圆的焦点,则k=|PF1|·|PF2|的最大值是______,最小值是______.

  9.“神舟六号”载人航天飞船的运行轨道是以地球中心为一个焦点的椭圆,设其近地点距地面n千米,远地点距地面m千米,地球半径为R,那么这个椭圆的焦距为________千米.

  三、解答题

  10.根据下列条件,求椭圆的标准方程.

  (1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P到两焦点的距离之和等于10;

  (2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点.

  11.已知点A(0,)和圆O1:x2+(y+)2=16,点M在圆O1上运动,点P在半径O1M上,且|PM|=|PA|,求动点P的轨迹方程.

  能力提升

  12.若点O和点F分别为椭圆+=1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为(  )

  A.2 B.3 C.6 D.8

  13.

  如图△ABC中底边BC=12,其它两边AB和AC上中线的和为30,求此三角形重心G的轨迹方程,并求顶点A的轨迹方程.

  1.椭圆的定义中只有当距离之和2a>|F1F2|时轨迹才是椭圆,如果2a=|F1F2|,轨迹是线段F1F2,如果2a<|F1F2|,则不存在轨迹.

  2.椭圆的标准方程有两种表达式,但总有a>b>0,因此判断椭圆的焦点所在的坐标轴要看方程中的分母,焦点在分母大的对应轴上.

  3.求椭圆的标准方程常用待定系数法,一般是先判断焦点所在的坐标轴进而设出相应的标准方程,然后再计算;如果不能确定焦点的位置,有两种方法求解,一是分类讨论,二是设椭圆方程的一般形式,即mx2+ny2=1 (m,n为不相等的正数).

  4.在与椭圆有关的求轨迹方程的问题中要注意挖掘几何关系.

  第三章 圆锥曲线与方程

  §1 椭 圆

  1.1 椭圆及其标准方程

  知识梳理

  1.常数 椭圆 焦点 焦距 线段F1F2 不存在

  2.+=1 (a>b>0) F1(-c,0),F2(c,0) 2c +=1 (a>b>0)


  参考答案

  1.D [∵|MF1|+|MF2|=6=|F1F2|,

  ∴动点M的轨迹是线段.]

  2.B [由椭圆方程知2a=8,

  由椭圆的定义知|AF1|+|AF2|=2a=8,

  |BF1|+|BF2|=2a=8,所以△ABF2的周长为16.]

  3.D

  4.B [|a|-1>a+3>0,解得-3b>0).

  ∵2a=10,∴a=5,又∵c=4.

  ∴b2=a2-c2=52-42=9.

  故所求椭圆的标准方程为+=1.

  (2)∵椭圆的焦点在y轴上,

  ∴设椭圆的标准方程为+=1 (a>b>0).

  由椭圆的定义知,2a= +

  =+=2,

  ∴a=.

  又∵c=2,∴b2=a2-c2=10-4=6.

  故所求椭圆的标准方程为+=1.

  11.解 ∵|PM|=|PA|,|PM|+|PO1|=4,

  ∴|PO1|+|PA|=4,又∵|O1A|=2<4,

  ∴点P的轨迹是以A、O1为焦点的椭圆,

  ∴c=,a=2,b=1,

  ∴动点P的轨迹方程为x2+=1.

  12.C [由椭圆方程得F(-1,0),设P(x0,y0),

  则·=(x0,y0)·(x0+1,y0)=x+x0+y.

  ∵P为椭圆上一点,∴+=1.

  ∴·=x+x0+3(1-)

  =+x0+3=(x0+2)2+2.

  ∵-2≤x0≤2,

  ∴·的最大值在x0=2时取得,且最大值等于6.]

  13.解 以BC边所在直线为x轴,BC边中点为原点,建立如图所示坐标系,

  则B(6,0),C(-6,0),CE、BD为AB、AC边上的中线,则|BD|+|CE|=30.

  由重心性质可知

  |GB|+|GC|

  =(|BD|+|CE|)=20.

  ∵B、C是两个定点,G点到B、C距离和等于定值20,且20>12,

  ∴G点的轨迹是椭圆,B、C是椭圆焦点.

  ∴2c=|BC|=12,c=6,2a=20,a=10,

  b2=a2-c2=102-62=64,

  故G点的轨迹方程为+=1 (x≠±10).

  又设G(x′,y′),A(x,y),则有+=1.

  由重心坐标公式知

  故A点轨迹方程为+=1.

  即+=1 (x≠±30).

结束
特别声明:1.凡本网注明稿件来源为“湖北自考网”的,转载必须注明“稿件来源:湖北自考网(www.hbzkw.com)”,违者将依法追究责任;
2.部分稿件来源于网络,如有不实或侵权,请联系我们沟通解决。最新官方信息请以湖北省教育考试院及各教育官网为准!
考试交流群 获取择校方案
考试交流群

扫一扫加入微信交流群

与学姐学长同城考生自由互动

成考院校 自考院校 专升本院校 资格证 其它热门栏目 最新更新