湖北2015年高考数学复习:平面之间的位置关系
2015年湖北高考生正在努力备考中,湖北高考网整理了2015年湖北高考数学辅导资料,希望对大家的复习有帮助。
一、选择题
1.下列命题正确的个数为( ).
经过三点确定一个平面;
梯形可以确定一个平面;
两两相交的三条直线最多可以确定三个平面;
如果两个平面有三个公共点,则这两个平面重合.
A.0 B.1 C.2 D.3
解析 错误,正确.
答案 C
2.若两条直线和一个平面相交成等角,则这两条直线的位置关系是( ).
A.平行 B.异面
C.相交 D.平行、异面或相交
解析 经验证,当平行、异面或相交时,均有两条直线和一个平面相交成等角的情况出现,故选D.
答案 D
3.若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分为( )
A.5部分 B.6部分
C.7部分 D.8部分
解析 垂直于交线的截面如图,把空间分为7部分.
C
4.在正方体ABCD-A1B1C1D1中,O是BD1的中点,直线A1C交平面AB1D1于点M,则下列结论错误的是( ).
A.A1、M、O三点共线 B.M、O、A1、A四点共面
C.A、O、C、M四点共面 D.B、B1、O、M四点共面
解析 因为O是BD1的中点.由正方体的性质知,点O在直线A1C上,O也是A1C的中点,又直线A1C交平面AB1D1于点M,则A1、M、O三点共线,A正确;又直线与直线外一点确定一个平面,所以B、C正确.
答案 D
5.一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中( ).
A.ABCD
B.AB与CD相交
C.ABCD
D.AB与CD所成的角为60°
解析 如图,把展开图中的各正方形按图(a)所示的方式分别作为正方体的前、后、左、右、上、下面还原,得到图(b)所示的直观图,可见选项A、B、C不正确.正确选项为D.图(b)中,DEAB,CDE为AB与CD所成的角,CDE为等边三角形,CDE=60°.
答案 D
6.如图,四棱锥SABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是( ).A.ACSB
B.AB平面SCD
C.SA与平面SBD所成的角等于SC与平面SBD所成的角
D.AB与SC所成的角等于DC与SA所成的角
解析 选项A正确,因为SD垂直于平面ABCD,而AC在平面ABCD中,所以AC垂直于SD;再由ABCD为正方形,所以AC垂直于BD;而BD与SD相交,所以,AC垂直于平面SBD,进而垂直于SB.选项B正确,因为AB平行于CD,而CD在平面SCD内,AB不在平面SCD内,所以AB平行于平面SCD.选项C正确,设AC与BD的交点为O,连接SO,则SA与平面SBD所成的角就是ASO,SC与平面SBD所成的角就是CSO,易知这两个角相等.选项D错误,AB与SC所成的角等于SCD,而DC与SA所成的角是SAB,这两个角不相等.
答案 D
二、填空题
7.已知a,b为不垂直的异面直线,α是一个平面,则a,b在α上的射影有可能是:
两条平行直线;两条互相垂直的直线;同一条直线;一条直线及其外一点.
在上面结论中,正确结论的编号是________(写出所有正确结论的编号).
解析 只有当ab时,a,b在α上的射影才可能是同一条直线,故错,其余都有可能.
答案
8. 如图,在正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:
直线AM与CC1是相交直线;
直线AM与BN是平行直线;
直线BN与MB1是异面直线;
直线AM与DD1是异面直线.
其中正确的结论为________(注:把你认为正确的结论的序号都填上).
解析 直线AM与CC1是异面直线,直线AM与BN也是异面直线,故错误.
9.如图,矩形ABCD中,AB=2,BC=4,将△ABD沿对角线 BD折起到△A′BD的位置,使点A′在平面BCD内的射影点O恰 好落在BC边上,则异面直线A′B与CD所成角的大小为________.
解析 如题图所示,
由A′O⊥平面ABCD,
可得平面A′BC⊥平面ABCD,
又由DC⊥BC可得DC⊥平面A′BC,DC⊥A′B,
即得异面直线A′B与CD所成角的大小为90°.
答案 90°
10.在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有________条.
解析 法一 在EF上任意取一点M,直线A1D1与M确定一个平面,这个平面与CD有且仅有1个交点N,当M取不同的位置就确定不同的平面,从而与CD有不同的交点N,而直线MN与这3条异面直线都有交点.如图所示.
法二 在A1D1上任取一点P,过点P与直线EF作一个平面α,因CD与平面α不平行,所以它们相交,设它们交于点Q,连接PQ,则PQ与EF必然相交,即PQ为所求直线.由点P的任意性,知有无数条直线与三条直线A1D1,EF,CD都相交.
答案 无数三、解答题
11. 如图所示,四边形ABEF和ABCD都是直角梯形,BAD=FAB=90°,BC綉AD,BE綉FA,G、H分别为FA、FD的中点.
(1)证明:四边形BCHG是平行四边形;
(2)C、D、F、E四点是否共面?为什么?
(1)证明 由已知FG=GA,FH=HD,可得GH綉AD.
又BC綉AD,GH綉BC,四边形BCHG为平行四边形.
(2)解 由BE綉AF,G为FA中点知,BE綉FG,
四边形BEFG为平行四边形,EF∥BG.
由(1)知BG綉CH,EF∥CH,EF与CH共面.
又DFH,C、D、F、E四点共面.
12.在长方体ABCD-A1B1C1D1的A1C1面上有一点P(如图所示,其中P点不在对角线B1D1)上.
(1)过P点在空间作一直线l,使l直线BD,应该如何作图?并说明理由;
(2)过P点在平面A1C1内作一直线m,使m与直线BD成α角,其中α,这样的直线有几条,应该如何作图?
解 (1)连接B1D1,BD,在平面A1C1内过P作直线l,使lB1D1,则l即为所求作的直线,如图(a).
B1D1∥BD,lB1D1,l∥直线BD.
图(a)
(2)BD∥B1D1,直线m与直线BD也成α角,即直线m为所求作的直线,如图(b).由图知m与BD是异面直线,且m与BD所成的角α.
当α=时,这样的直线m有且只有一条,当α≠时,这样的直线m有两条.
图(b).如图,空间四边形ABCD中,E、F分别是AD、AB的中点,G、H分别在BC、CD上,且BGGC=DHHC=12.
(1)求证:E、F、G、H四点共面;
(2)设FG与HE交于点P,求证:P、A、C三点共线.
证明 (1)ABD中,E、F为AD、AB中点,
EF∥BD.
△CBD中,BGGC=DHHC=12,
GH∥BD,EF∥GH(平行线公理),
E、F、G、H四点共面.
(2)FG∩HE=P,PFG,PHE,
P∈直线AC.
P、A、C三点共线.
13.在四棱锥P-ABCD中,底面是边长为2的菱形,DAB=60°,对角线AC与BD交于点O,PO平面ABCD,PB与平面ABCD所成角为60°.
(1)求四棱锥的体积;
(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.
解 (1)在四棱锥P-ABCD中,
PO⊥面ABCD,
PBO是PB与面ABCD所成的角,即PBO=60°,在RtPOB中,
BO=AB·sin 30°=1,
又POOB,PO=BO·tan 60°=,
底面菱形的面积S菱形ABCD=2.
四棱锥P-ABCD的体积VP-ABCD=×2×=2.
(2)取AB的中点F,连接EF,DF,
E为PB中点,EF∥PA,
DEF为异面直线DE与PA所成角(或其补角).在RtAOB中,
AO=AB·cos 30°==OP,
在RtPOA中,PA=,EF=.
在正三角形ABD和正三角形PDB中,DF=DE=,
cos∠DEF====.
即异面直线DE与PA所成角的余弦值为.
扫一扫加入微信交流群
与学姐学长同城考生自由互动