来源:湖北自考网
时间:2012-08-08
高考2013年数学复习资料:函数的单调性解析
知识要点:
1.函数单调性的定义:
设函数f(x)在定义域的某个区间D上,若对于任意x1,x2∈D,当x1f(x2)),则函数f(x)在区间D上为增(减)函数。
定义的变形:
(1)设任意x1,x2∈D, ->0←→f(x)在D上是增函数。
(2)设任意x1,x2∈D,(x1-x2)·[f(x1)-f(x2)]>0←→f(x)在D上是增函数。
2.判断函数单调性的常用方法:
(1)证明一个函数的单调性的方法:定义法,导数法;
(2)判断一个函数的单调性的常用方法:定义法,导数法,图象法,化归常见函数法,运用复合函数单调性规律。
3.常用复合函数单调性规律:
(1)若函数f(x),g(x)在区间D上均为增(减)函数,则函数f(x)+g(x)在区间D上仍为增(减)函数。
(2)若函数f(x)在区间D上为增(减)函数,则函数-f(x)在区间D上为减(增)函数。
(3)复合函数f[g(x)]的单调性的判断分两步:Ⅰ考虑函数f[g(x)]的定义域;
Ⅱ利用内层函数t=g(x)和外层函数y=f(t)确定函数f[g(x)]的单调性,法则是“同增异减”,即内外函数单调性相同时为增函数,内外层函数单调性相反时为减函数。典型例题:
例1:确定下列函数的单调区间:
(1)y=x2-3x+-
解:x∈R
(x--)2-2(x0)
(x+-)2-2(x<0)
由二次函数图象可知y在(-∞,--)和(0,-)上为减函数,在(--,0)和(-,+∞)上为减函数。
说明:利用绝对值的意义,分类去掉绝对值化归为常见函数是解题的关键。注意当一个函数在多个区间上具有相同的单调性时,这多个区间之间不能使用“或”以及“∪”。
结束
特别声明:1.凡本网注明稿件来源为“湖北自考网”的,转载必须注明“稿件来源:湖北自考网(www.hbzkw.com)”,违者将依法追究责任;
2.部分稿件来源于网络,如有不实或侵权,请联系我们沟通解决。最新官方信息请以湖北省教育考试院及各教育官网为准!
"2013年高考数学复习资料:函数的单调性解析" 相关文章推荐