湖北
2013年高考数学复习:数学归纳法
常见数学归纳法及其证明方法
(一)第一数学归纳法
一般地,证明一个与正整数n有关的命题,有如下步骤
(1)证明当n取第一个值时命题成立,对于一般数列取值为1,但也有特殊情况,
(2)假设当n=k(k≥[n的第一个值],k为自然数)时命题成立,证明当n=k+1时命题也成立。
(二)第二数学归纳法
对于某个与自然数有关的命题,
(1)验证n=n0时P(n)成立,
(2)假设no<n<k时P(n)成立,并在此基础上,推出P(k+1)成立。
综合(1)(2)对一切自然数n(>n0),命题P(n)都成立,
(三)螺旋式数学归纳法
P(n),Q(n)为两个与自然数有关的命题,
假如(1)P(n0)成立,
(2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设Q(k)成立,能推出P(k+1)成立,综合(1)(2),对于一切自然数n(>n0),P(n),Q(n)都成立,
(四)倒推数学归纳法(又名反向数学归纳法)
(1)对于无穷多个自然数命题P(n)成立,
(2)假设P(k+1)成立,并在此基础上推出P(k)成立,
综合(1)(2),对一切自然数n(>n0),命题P(n)都成立,
扫一扫加入微信交流群
与学姐学长同城考生自由互动